Conductivity and Permeability of the Submitted Samples of 40/70 Roark and 70/140 Roark Frac Sand (Tested in Duplicate) At 2 lb/ft<sup>2</sup> and at 2,000 - 12,000 psi Closure Stresses At 150 °F for 50 Hr. between Ohio Sandstone

> Prepared for: Mr. Dennis Mathis Turnkey Processing Solutions, LLC 28369 Davis Parkway, Suite 407 Warrenville, IL 60555 (815) 741-3760 Office dmathis@turnkeyprocessing.com

Prepared by: Stim-Lab, Inc. P.O. Box 1644 7406 North Hwy 81 Duncan, Oklahoma 73534-1644

Kathy Abney, Conductivity Supervisor

P.O. Number: PO # 1007

File Number: SL 12217-2

March, 2017

ALL INTERPRETATIONS ARE OPINIONS BASED ON INFERENCES FROM SAMPLES AND LOGS, WHICH WERE SUPPLIED. WE CANNOT, AND DO NOT, GUARANTEE THE ACCURACY OR CORRECTNESS OF ANY INTERPRETATIONS, AND WE SHALL NOT, EXCEPT IN THE CASE OF GROSS OR WILLFUL NEGLIGENCE ON OUR PART, BE LIABLE OR RESPONSIBLE FOR ANY LOSS, COSTS, DAMAGES OR EXPENSES INCURRED OR SUSTAINED BY ANYONE RESULTING FROM ANY INTERPRETATION MADE BY ANY OF OUR OFFICERS, AGENTS OR EMPLOYEES. THESE CONTROL OR SUBJECT TO OUR GENERAL TERMS AND CONDITIONS AS SET OUT IN OUR CURRENT PRICE SCHEDULE. NOTICE: SAMPLES SUBMITTED TO SITM-LAB, INC. FOR USE IN TESTING SERVICES ARE SUBJECT TO DISPOSAL OR STORAGE FEES FOLLOWING THE COMPLETION OF THE TESTING SERVICES. DIRECTIVE AS TO THE DISPOSITION OF SAMPLES UNT THE SAMPLES OR OTHERWISE PROVIDED DURING THE COMPLETION OF THE TESTING SERVICES. DIRECTIVE AS TO THE DISPOSITION OF SAMPLES UNT THE SAMPLES OR OTHERWISE PROVIDED DURING THE COMPLETION OF THE TESTING SERVICES. DIRECTIVE AS TO THE DISPOSITION OF SAMPLES ON OTHER MATERIALS OF THE PROJECT. STIM-LAB, INC. RESERVES THE RIGHT TO REQUEST THAT YOU PICKUP SAMPLES, WHETHER FORMATION MATERIAL, CHEMICALS SUPPLIED, FIXTURES OR OTHER MATERIALS RELATING TO A PROJECT. YOU MAY BE CHARGED A REASONABLE SHIPPING AND PACKAGING FEE FOR RETURN OF SAMPLES FOR WHICH PICK UP ARRANGEMENTS HAVE NOT BEEN MADE. STIM-LAB, INC. EXPRESSLY DISCLAIMS LIABILITY FOR INTENTIONAL DISPOSAL OF SUBMITTED DIRECTORED AND ARE CHARGED A REASONABLE SHIPPING AND PACKAGING FEE FOR RETURN OF SAMPLES FOR WHICH PICK UP ARRANGEMENTS HAVE NOT BEEN MADE. STIM-LAB, INC. EXPRESSLY DISCLAIMS LIABILITY FOR INTENTIONAL DISPOSAL OF SUBMITTED DIRECTORED FEE FOR METTED INTONAL DISPOSAL OS OF SUBMITTED DARDE SFOR WHICH NO WRITTEN DIRECTIVE HAS BEEN PROVIDED.





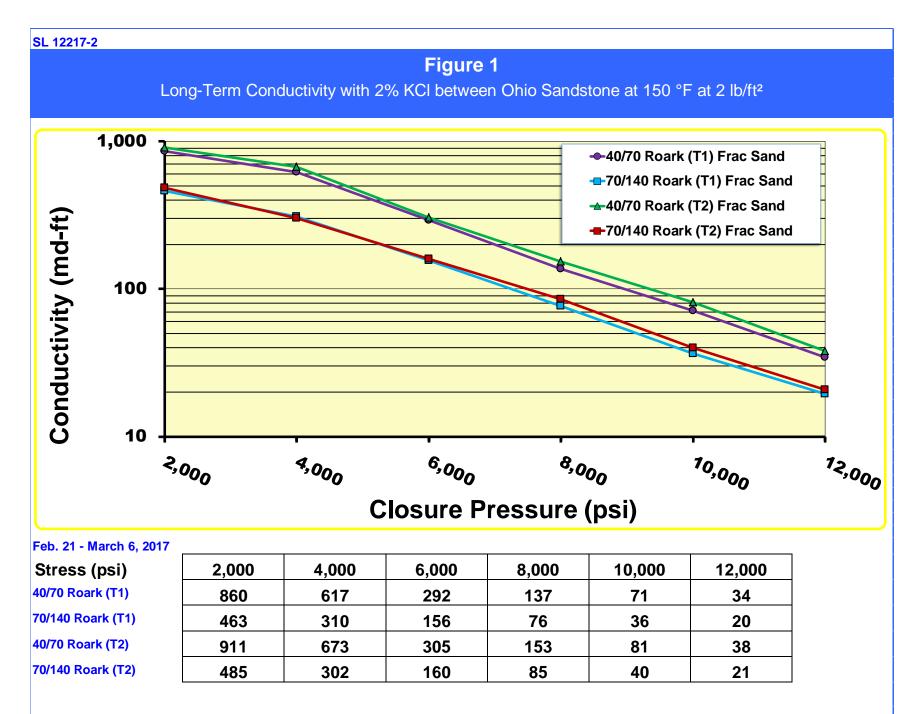
STIM-LAB, Inc. 7118 North HWY 81 Duncan, Oklahoma 73533-8719 Phone: 580-252-4309 Fax: 580-252-6979

March 7, 2017

Mr. Dennis Mathis Turnkey Processing Solutions, LLC 28369 Davis Parkway, Suite 407 Warrenville, IL 60555 (815) 741-3760 Office dmathis@turnkeyprocessing.com

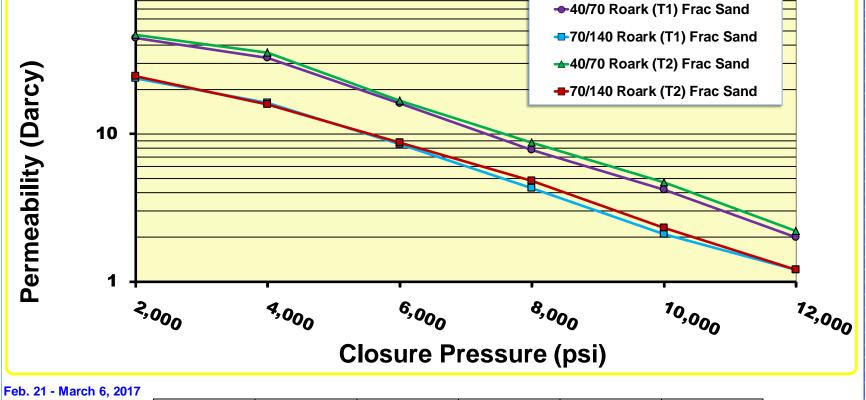
Dear Mr. Mathis;

STIM-LAB has completed the evaluations of the requested conductivity of the samples submitted by your firm marked 40/70 Roark and 70/140 Roark frac sand arriving at Stim-Lab on January 23, 2017. The samples were evaluated in duplicate at 2 lb/ft<sup>2</sup> at 150 °F and long-term for 50 hours at 2000, 4000, 6000, 8000, 10,000, and 12,000 psi closure stress between Ohio Sandstone.


The procedures are outlined in the following section of this report. Figures 1 and 2 contain a summary of conductivity and permeability vs. stress. The conductivity data is presented in Tables 1 - 4. The sieve analyses of the samples are provided in Table 5.

Thank you and Turnkey Processing Solutions, LLC for allowing STIM-LAB to perform this test series. If you have any questions, please do not hesitate to call.

Sincerely,


Kathy Abney Conductivity Supervisor





\*Sample Data Represents the 50 Hour Conductivity Value at the Given Closure Stress

SL 12217-2 Figure 2 Long-Term Permeability with 2% KCl between Ohio Sandstone at 150 °F at 2 lb/ft<sup>2</sup> 40/70 Roark (T1) Frac Sar • 40/70 Roark (T1) Frac Sar • 40/70 Roark (T2) Frac Sar • 70/140 Roark (T2) Frac Sar



| Stress (psi)      | 2,000 | 4,000 | 6,000 | 8,000 | 10,000 | 12,000 |
|-------------------|-------|-------|-------|-------|--------|--------|
| 40/70 Roark (T1)  | 45    | 33    | 16    | 7.8   | 4.2    | 2.0    |
| 70/140 Roark (T1) | 24    | 16    | 8.5   | 4.3   | 2.1    | 1.2    |
| 40/70 Roark (T2)  | 47    | 36    | 17    | 8.7   | 4.7    | 2.2    |
| 70/140 Roark (T2) | 25    | 16    | 8.7   | 4.8   | 2.3    | 1.2    |

\*Sample Data Represents the 50 Hour Permeability Value at the Given Closure Stress

| Table 1   Conductivity and Permeability of   2 lb/ft² 40/70 Roark (T1)   Submitted by Turnkey Processing Solutions, LLC at Stim-Lab on January 23, 2017   In 2% KCI between Ohio Sandstone Core |                  |             |                  |            |                         |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|------------------|------------|-------------------------|--|
| Hrs at Closure<br>& Temperature                                                                                                                                                                 | Closure<br>(psi) | Tem<br>(° F |                  | width (in) | Permeability<br>(Darcy) |  |
| -14                                                                                                                                                                                             | 1000             | 75          | 926              | 0.233      | 48                      |  |
| -2                                                                                                                                                                                              | 1000             | 150         |                  | 0.233      | 48                      |  |
| 0                                                                                                                                                                                               | 2000             | 150         | 872              | 0.232      | 45                      |  |
| 10                                                                                                                                                                                              | 2000             | 150         | 864              | 0.232      | 45                      |  |
| 20                                                                                                                                                                                              | 2000             | 150         | 862              | 0.232      | 45                      |  |
| 30                                                                                                                                                                                              | 2000             | 150         | 861              | 0.232      | 45                      |  |
| 40                                                                                                                                                                                              | 2000             | 150         | 860              | 0.232      | 44                      |  |
| 50                                                                                                                                                                                              | 2000             | 150         | 860              | 0.232      | 45                      |  |
| 0                                                                                                                                                                                               | 4000             | 150         |                  | 0.228      | 38                      |  |
| 10                                                                                                                                                                                              | 4000             | 150         |                  | 0.227      | 35                      |  |
| 20                                                                                                                                                                                              | 4000             | 150         |                  | 0.226      | 34                      |  |
| 30                                                                                                                                                                                              | 4000             | 150         |                  | 0.226      | 33                      |  |
| 40                                                                                                                                                                                              | 4000             | 150         |                  | 0.226      | 33                      |  |
| 50                                                                                                                                                                                              | 4000             | 150         | 617              | 0.226      | 33                      |  |
| 0                                                                                                                                                                                               | 6000             | 150         |                  | 0.222      | 25                      |  |
| 10                                                                                                                                                                                              | 6000             | 150         |                  | 0.219      | 19                      |  |
| 20                                                                                                                                                                                              | 6000             | 150         |                  | 0.218      | 18                      |  |
| 30                                                                                                                                                                                              | 6000             | 150         | 310              | 0.218      | 17                      |  |
| 40                                                                                                                                                                                              | 6000             | 150         | 300              | 0.218      | 17                      |  |
| 50                                                                                                                                                                                              | 6000             | 150         | 292              | 0.218      | 16                      |  |
| 0                                                                                                                                                                                               | 8000             | 150         | 237              | 0.216      | 13                      |  |
| 10                                                                                                                                                                                              | 8000             | 150         | 172              | 0.212      | 9.7                     |  |
| 20                                                                                                                                                                                              | 8000             | 150         |                  | 0.212      | 8.9                     |  |
| 30                                                                                                                                                                                              | 8000             | 150         |                  | 0.211      | 8.4                     |  |
| 40                                                                                                                                                                                              | 8000             | 150         |                  | 0.211      | 8.1                     |  |
| 50                                                                                                                                                                                              | 8000             | 150         |                  | 0.211      | 7.8                     |  |
| 0                                                                                                                                                                                               | 10000            | 150         | 114              | 0.210      | 6.5                     |  |
| 10                                                                                                                                                                                              | 10000            | 150         |                  | 0.208      | 5.0                     |  |
| 20                                                                                                                                                                                              | 10000            | 150         |                  | 0.207      | 4.6                     |  |
| 30                                                                                                                                                                                              | 10000            | 150         |                  | 0.206      | 4.4                     |  |
| 40                                                                                                                                                                                              | 10000            | 150         |                  | 0.206      | 4.3                     |  |
| 50                                                                                                                                                                                              | 10000            | 150         |                  | 0.206      | 4.2                     |  |
| 0                                                                                                                                                                                               | 12000            | 150         | 58               | 0.204      | 3.4                     |  |
| 10                                                                                                                                                                                              | 12000            | 150         |                  | 0.203      | 2.5                     |  |
| 20                                                                                                                                                                                              | 12000            | 150         |                  | 0.203      | 2.3                     |  |
| 30                                                                                                                                                                                              | 12000            | 150         | 37               | 0.202      | 2.2                     |  |
| 40                                                                                                                                                                                              | 12000            | 150         | 36               | 0.202      | 2.1                     |  |
| 50                                                                                                                                                                                              | 12000            | 150         | 34               | 0.202      | 2.0                     |  |
|                                                                                                                                                                                                 | 017              |             | Sieve            |            | % Retained              |  |
|                                                                                                                                                                                                 |                  |             | 30               |            | 0.0                     |  |
|                                                                                                                                                                                                 |                  |             | 35               |            | 0.0                     |  |
|                                                                                                                                                                                                 |                  |             | 40               |            | 0.0                     |  |
|                                                                                                                                                                                                 |                  |             | 45               |            | 4.2                     |  |
| Median Dia. =                                                                                                                                                                                   | 0.262            | mm          | 50               |            | 8.8                     |  |
|                                                                                                                                                                                                 | 0.0103           | inch        | 60               |            | 45.3                    |  |
| Mean Dia. =                                                                                                                                                                                     | 0.266            | mm          | 70               |            | 40.3                    |  |
|                                                                                                                                                                                                 | 0.0105           | inch        | 80               |            | 1.3                     |  |
| 0.0100 1101                                                                                                                                                                                     |                  |             | 100              |            | 0.0                     |  |
| pan                                                                                                                                                                                             |                  |             |                  |            | 0.0                     |  |
|                                                                                                                                                                                                 |                  |             | Total            | -          | 100.0                   |  |
|                                                                                                                                                                                                 |                  |             | % In Size as -40 | 170        | 98.6                    |  |



1

| SL 12217-2                                                                     |                      |                   | Table 2                 |                         |                         |  |
|--------------------------------------------------------------------------------|----------------------|-------------------|-------------------------|-------------------------|-------------------------|--|
|                                                                                |                      |                   | and Permeability of     |                         |                         |  |
| 2 lb/ft² 70/140 Roark (T1)                                                     |                      |                   |                         |                         |                         |  |
| Submitted by Turnkey Processing Solutions, LLC at Stim-Lab on January 23, 2017 |                      |                   |                         |                         |                         |  |
| In 2% KCI between Ohio Sandstone Core                                          |                      |                   |                         |                         |                         |  |
| Hrs at Closure<br>& Temperature                                                | Closure<br>(psi)     | Temp<br>(° F)     | Conductivity<br>(md-ft) | Width<br>(in)           | Permeability<br>(Darcy) |  |
| -14<br>-2                                                                      | 1000<br>1000         | 75<br>150         | 522<br>515              | 0.236<br>0.235          | 27<br>26                |  |
| 0<br>10                                                                        | 2000<br>2000         | 150<br>150        | 486<br>471              | 0.234<br>0.234          | 25<br>24                |  |
| 20<br>30                                                                       | 2000<br>2000         | 150<br>150        | 468<br>466              | 0.234<br>0.234          | 24<br>24                |  |
| 40<br>50                                                                       | 2000<br>2000         | 150<br>150        | 464<br>463              | 0.234<br>0.234          | 24<br>24                |  |
| 0<br>10                                                                        | 4000<br>4000         | 150<br>150        | 370<br>331              | 0.232<br>0.230          | 19<br>17                |  |
| 20<br>30                                                                       | 4000<br>4000<br>4000 | 150<br>150<br>150 | 322<br>317              | 0.229                   | 17<br>17<br>17          |  |
| 40<br>50                                                                       | 4000<br>4000<br>4000 | 150<br>150<br>150 | 313<br>310              | 0.229                   | 16<br>16                |  |
| 0                                                                              | 6000                 | 150               | 223                     | 0.225                   | 12                      |  |
| 10<br>20                                                                       | 6000<br>6000         | 150<br>150        | 179<br>169              | 0.222<br>0.221          | 9.7<br>9.2              |  |
| 30<br>40                                                                       | 6000<br>6000         | 150<br>150        | 163<br>159              | 0.221<br>0.220          | 8.9<br>8.7              |  |
| 50<br>0                                                                        | 6000<br>8000         | 150<br>150        | 156<br>124              | 0.220<br>0.217          | 8.5<br>6.9              |  |
| 10<br>20                                                                       | 8000<br>8000         | 150<br>150<br>150 | 93<br>86                | 0.217<br>0.215<br>0.214 | 5.2<br>4.8              |  |
| 30<br>40                                                                       | 8000<br>8000         | 150<br>150        | 82<br>79                | 0.214<br>0.213          | 4.6<br>4.4              |  |
| 50                                                                             | 8000                 | 150               | 76                      | 0.213                   | 4.3                     |  |
| 0<br>10                                                                        | 10000<br>10000       | 150<br>150        | 61<br>44                | 0.212<br>0.210          | 3.5<br>2.5              |  |
| 20<br>30                                                                       | 10000<br>10000       | 150<br>150        | 41<br>39                | 0.209<br>0.208          | 2.3<br>2.2              |  |
| 40<br>50                                                                       | 10000<br>10000       | 150<br>150        | 37<br>36                | 0.208<br>0.208          | 2.2<br>2.1              |  |
| 0<br>10                                                                        | 12000<br>12000       | 150<br>150        | 33<br>25                | 0.207<br>0.204          | 1.9<br>1.5              |  |
| 20<br>30                                                                       | 12000<br>12000       | 150<br>150        | 23<br>21                | 0.203<br>0.203          | 1.3<br>1.3              |  |
| 40<br>50                                                                       | 12000<br>12000       | 150<br>150        | 20<br>20                | 0.202<br>0.202          | 1.2<br>1.2              |  |
| Feb. 21 - March 6, 20                                                          | )17                  |                   | Sieve<br>50             |                         | % Retained<br>0.0       |  |
|                                                                                |                      |                   | 60<br>70                |                         | 0.0<br>3.6              |  |
| Median Dia. =                                                                  | 0.178                | mm                | 80<br>100               |                         | 59.1<br>24.4            |  |
| Mean Dia. =                                                                    | 0.0070<br>0.181      | inch<br>mm        | 120<br>140              |                         | 9.3<br>2.2              |  |
|                                                                                | 0.0071               | inch              | 170<br>200              |                         | 1.4<br>0.0              |  |
|                                                                                |                      |                   | pan<br>Total            |                         | 0.0                     |  |
|                                                                                |                      |                   | % In Size as -70+140    | )                       | 95.0                    |  |



| Table 3   Conductivity and Permeability of   2 Ib/ft² 40/70 Roark (T2)   Submitted by Turnkey Processing Solutions, LLC at Stim-Lab on January 23, 2017 |        |       |                    |       |            |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|--------------------|-------|------------|--|--|
| In 2% KCI between Ohio Sandstone Core<br>Hrs at Closure Closure Temp Conductivity Width Permeability                                                    |        |       |                    |       |            |  |  |
| & Temperature                                                                                                                                           | (psi)  | (° F) | (md-ft)            | (in)  | (Darcy)    |  |  |
| -14                                                                                                                                                     | 1000   | 75    | 994                | 0.233 | 51         |  |  |
| -2                                                                                                                                                      | 1000   | 150   | 992                | 0.233 | 51         |  |  |
| 0                                                                                                                                                       | 2000   | 150   | 934                | 0.232 | 48         |  |  |
| 10                                                                                                                                                      | 2000   | 150   | 919                | 0.232 | 48         |  |  |
| 20                                                                                                                                                      | 2000   | 150   | 915                | 0.232 | 47         |  |  |
| 30                                                                                                                                                      | 2000   | 150   | 913                | 0.232 | 47         |  |  |
| 40                                                                                                                                                      | 2000   | 150   | 912                | 0.232 | 47         |  |  |
| 50                                                                                                                                                      | 2000   | 150   | 911                | 0.232 | 47         |  |  |
| 0                                                                                                                                                       | 4000   | 150   | 774                | 0.229 | 41         |  |  |
| 10                                                                                                                                                      | 4000   | 150   | 708                | 0.228 | 37         |  |  |
| 20                                                                                                                                                      | 4000   | 150   | 693                | 0.227 | 37         |  |  |
| 30                                                                                                                                                      | 4000   | 150   | 684                | 0.227 | 36         |  |  |
| 40                                                                                                                                                      | 4000   | 150   | 678                | 0.227 | 36         |  |  |
| 50                                                                                                                                                      | 4000   | 150   | 673                | 0.227 | 36         |  |  |
| 0                                                                                                                                                       | 6000   | 150   | 492                | 0.223 | 27         |  |  |
| 10                                                                                                                                                      | 6000   | 150   | 378                | 0.220 | 21         |  |  |
| 20                                                                                                                                                      | 6000   | 150   | 346                | 0.219 | 19         |  |  |
| 30                                                                                                                                                      | 6000   | 150   | 328                | 0.218 | 18         |  |  |
| 40                                                                                                                                                      | 6000   | 150   | 315                | 0.218 | 17         |  |  |
| 50                                                                                                                                                      | 6000   | 150   | 305                | 0.218 | 17         |  |  |
| 0                                                                                                                                                       | 8000   | 150   | 272                | 0.216 | 15         |  |  |
| 10                                                                                                                                                      |        |       |                    |       | 15         |  |  |
|                                                                                                                                                         | 8000   | 150   | 195                | 0.213 |            |  |  |
| 20                                                                                                                                                      | 8000   | 150   | 177                | 0.213 | 10         |  |  |
| 30<br>40                                                                                                                                                | 8000   | 150   | 166                | 0.212 | 9.4        |  |  |
|                                                                                                                                                         | 8000   | 150   | 159                | 0.212 | 9.0        |  |  |
| 50                                                                                                                                                      | 8000   | 150   | 153                | 0.212 | 8.7        |  |  |
| 0                                                                                                                                                       | 10000  | 150   | 145                | 0.211 | 8.2        |  |  |
| 10                                                                                                                                                      | 10000  | 150   | 104                | 0.209 | 6.0        |  |  |
| 20                                                                                                                                                      | 10000  | 150   | 94                 | 0.208 | 5.4        |  |  |
| 30                                                                                                                                                      | 10000  | 150   | 88                 | 0.207 | 5.1        |  |  |
| 40                                                                                                                                                      | 10000  | 150   | 84                 | 0.207 | 4.9        |  |  |
| 50                                                                                                                                                      | 10000  | 150   | 81                 | 0.207 | 4.7        |  |  |
| 0                                                                                                                                                       | 12000  | 150   | 68                 | 0.205 | 4.0        |  |  |
| 10                                                                                                                                                      | 12000  | 150   | 48                 | 0.203 | 2.9        |  |  |
| 20                                                                                                                                                      | 12000  | 150   | 44                 | 0.203 | 2.6        |  |  |
| 30                                                                                                                                                      | 12000  | 150   | 41                 | 0.202 | 2.4        |  |  |
| 40                                                                                                                                                      | 12000  | 150   | 39                 | 0.202 | 2.3        |  |  |
| 50                                                                                                                                                      | 12000  | 150   | 38                 | 0.202 | 2.2        |  |  |
| eb. 21 - March 6, 2                                                                                                                                     | 017    |       | Sieve              |       | % Retained |  |  |
|                                                                                                                                                         |        |       | 30                 |       | 0.0        |  |  |
|                                                                                                                                                         |        |       | 35                 |       | 0.0        |  |  |
|                                                                                                                                                         |        |       | 40                 |       | 0.0        |  |  |
|                                                                                                                                                         |        |       | 45                 |       | 4.2        |  |  |
| Median Dia. =                                                                                                                                           | 0.262  | mm    | 50                 |       | 8.8        |  |  |
|                                                                                                                                                         | 0.0103 | inch  | 60                 |       | 45.3       |  |  |
| Vlean Dia. =                                                                                                                                            | 0.266  | mm    | 70                 |       | 40.3       |  |  |
|                                                                                                                                                         | 0.0105 | inch  | 80                 |       | 1.3        |  |  |
|                                                                                                                                                         |        |       | 100                |       | 0.0        |  |  |
|                                                                                                                                                         |        |       | pan                |       | 0.0        |  |  |
|                                                                                                                                                         |        |       | Total              |       | 100.0      |  |  |
|                                                                                                                                                         |        |       | % In Size as -40+7 | 0     | 98.6       |  |  |



T

| SL 12217-2                                                                                                              |              |            |                                   |                |            |  |  |
|-------------------------------------------------------------------------------------------------------------------------|--------------|------------|-----------------------------------|----------------|------------|--|--|
|                                                                                                                         |              | Conductivi | Table 4<br>ty and Permeability of |                |            |  |  |
| 2 lb/ft <sup>2</sup> 70/140 Roark (T2)                                                                                  |              |            |                                   |                |            |  |  |
| Submitted by Turnkey Processing Solutions, LLC at Stim-Lab on January 23, 2017<br>In 2% KCl between Ohio Sandstone Core |              |            |                                   |                |            |  |  |
| Hrs at Closure Closure Temp Conductivity Width Permeability                                                             |              |            |                                   |                |            |  |  |
| & Temperatur                                                                                                            |              | (° F)      | (md-ft)                           | (in)           | (Darcy)    |  |  |
| -14<br>-2                                                                                                               | 1000<br>1000 | 75<br>150  | 577<br>550                        | 0.237<br>0.236 | 29<br>28   |  |  |
| 0                                                                                                                       | 2000         | 150        | 507                               | 0.235          | 26         |  |  |
| 10                                                                                                                      | 2000         | 150        | 493                               | 0.235          | 25         |  |  |
| 20                                                                                                                      | 2000         | 150        | 489                               | 0.235          | 25         |  |  |
| 30                                                                                                                      | 2000         | 150        | 487                               | 0.235          | 25         |  |  |
| 40                                                                                                                      | 2000         | 150        | 486                               | 0.235          | 25         |  |  |
| 50                                                                                                                      | 2000         | 150        | 485                               | 0.235          | 25         |  |  |
| 0                                                                                                                       | 4000         | 150        | 364                               | 0.231          | 19         |  |  |
| 10                                                                                                                      | 4000         | 150        | 324                               | 0.229          | 17         |  |  |
| 20                                                                                                                      | 4000         | 150        | 315                               | 0.228          | 17         |  |  |
| 30                                                                                                                      | 4000         | 150        | 309                               | 0.228          | 16         |  |  |
| 40                                                                                                                      | 4000         | 150        | 305                               | 0.228          | 16         |  |  |
| 50                                                                                                                      | 4000         | 150        | 302                               | 0.228          | 16         |  |  |
| 0                                                                                                                       | 6000         | 150        | 223                               | 0.225          | 12         |  |  |
| 10                                                                                                                      | 6000         | 150        | 182                               | 0.222          | 9.8        |  |  |
| 20                                                                                                                      | 6000         | 150        | 172                               | 0.221          | 9.4        |  |  |
| 30                                                                                                                      | 6000         | 150        | 167                               | 0.220          | 9.1        |  |  |
| 40                                                                                                                      | 6000         | 150        | 163                               | 0.220          | 8.9        |  |  |
| 50                                                                                                                      | 6000         | 150        | 160                               | 0.220          | 8.7        |  |  |
| 0                                                                                                                       | 8000         | 150        | 136                               | 0.218          | 7.5        |  |  |
| 10                                                                                                                      | 8000         | 150        | 103                               | 0.216          | 5.7        |  |  |
| 20                                                                                                                      | 8000         | 150        | 96                                | 0.215          | 5.3        |  |  |
| 30                                                                                                                      | 8000         | 150        | 91                                | 0.214          | 5.1        |  |  |
| 40                                                                                                                      | 8000         | 150        | 88                                | 0.214          | 4.9        |  |  |
| 50                                                                                                                      | 8000         | 150        | 85                                | 0.214          | 4.8        |  |  |
| 0                                                                                                                       | 10000        | 150        | 83                                | 0.213          | 4.7        |  |  |
| 10                                                                                                                      | 10000        | 150        | 55                                | 0.210          | 3.2        |  |  |
| 20                                                                                                                      | 10000        | 150        | 49                                | 0.209          | 2.8        |  |  |
| 30                                                                                                                      | 10000        | 150        | 45                                | 0.209          | 2.6        |  |  |
| 40                                                                                                                      | 10000        | 150        | 42                                | 0.209          | 2.4        |  |  |
| 50                                                                                                                      | 10000        | 150        | 40                                | 0.209          | 2.3        |  |  |
| 0                                                                                                                       | 12000        | 150        | 38                                | 0.208          | 2.2        |  |  |
| 10                                                                                                                      | 12000        | 150        | 27                                | 0.206          | 1.6        |  |  |
| 20                                                                                                                      | 12000        | 150        | 24                                | 0.205          | 1.4        |  |  |
| 30                                                                                                                      | 12000        | 150        | 23                                | 0.204          | 1.3        |  |  |
| 40                                                                                                                      | 12000        | 150        | 22                                | 0.203          | 1.3        |  |  |
| 50                                                                                                                      | 12000        | 150        | 21                                | 0.203          | 1.2        |  |  |
| Feb. 21 - March 6,                                                                                                      | 2017         |            | Sieve                             |                | % Retained |  |  |
|                                                                                                                         |              |            | 50                                |                | 0.0        |  |  |
|                                                                                                                         |              |            | 60                                |                | 0.0        |  |  |
|                                                                                                                         |              |            | 70                                |                | 3.6        |  |  |
|                                                                                                                         |              |            | 80                                |                | 59.1       |  |  |
| Median Dia. =                                                                                                           | 0.178        | mm         | 100                               |                | 24.4       |  |  |
|                                                                                                                         | 0.0070       | inch       | 120                               |                | 9.3        |  |  |
| Mean Dia. =                                                                                                             | 0.181        | mm         | 140                               |                | 2.2        |  |  |
|                                                                                                                         | 0.0071       | inch       | 170                               |                | 1.4        |  |  |
|                                                                                                                         |              |            | 200                               |                | 0.0        |  |  |
| pan                                                                                                                     |              |            |                                   | 0.0            |            |  |  |
|                                                                                                                         |              |            | Total                             |                | 100.0      |  |  |
|                                                                                                                         |              |            | % In Size as -70+14               | 0              | 95.0       |  |  |



| SL 12217-2                                                                                                                 |           |                         |                   |                      |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------|-------------------|----------------------|--|--|--|--|
| Table 5     Pre-Test Sieve Analysis of Submitted Samples                                                                   |           |                         |                   |                      |  |  |  |  |
| Submitted by Turnkey Processing Solutions, LLC at Stim-Lab on January 23, 2017<br>ISO 13503-2, Section 6, "Sieve Analysis" |           |                         |                   |                      |  |  |  |  |
| Turnkey Processing Solutions, LLC Turnkey Processing Solutions, LLC                                                        |           |                         |                   |                      |  |  |  |  |
| Sample I.D.                                                                                                                |           | ng Solutions, LLC<br>70 | 70/140            |                      |  |  |  |  |
| Campio I.D.                                                                                                                | Roark - F | rac Sand                | Roark - Frac Sand |                      |  |  |  |  |
| US Standard                                                                                                                | Weig      | ht %                    | Weig              | 1ht %                |  |  |  |  |
| Sieve No.                                                                                                                  | Retained  | Cumulative              | Retained          | Cumulative           |  |  |  |  |
|                                                                                                                            |           |                         |                   |                      |  |  |  |  |
| 8                                                                                                                          | 0.0       | 0.0                     | 0.0               | 0.0                  |  |  |  |  |
| 10                                                                                                                         | 0.0       | 0.0                     | 0.0               | 0.0                  |  |  |  |  |
| 12                                                                                                                         | 0.0       | 0.0                     | 0.0               | 0.0                  |  |  |  |  |
| 14                                                                                                                         | 0.0       | 0.0                     | 0.0               | 0.0                  |  |  |  |  |
| 16                                                                                                                         | 0.0       | 0.0                     | 0.0               | 0.0                  |  |  |  |  |
| 18                                                                                                                         | 0.0       | 0.0                     | 0.0               | 0.0                  |  |  |  |  |
| 20                                                                                                                         | 0.0       | 0.0                     | 0.0               | 0.0                  |  |  |  |  |
| 25                                                                                                                         | 0.0       | 0.0                     | 0.0               | 0.0                  |  |  |  |  |
| 30                                                                                                                         | 0.0       | 0.0                     | 0.0               | 0.0                  |  |  |  |  |
| 35                                                                                                                         | 0.0       | 0.0                     | 0.0               | 0.0                  |  |  |  |  |
| 40                                                                                                                         | 0.0       | 0.0                     | 0.0               | 0.0                  |  |  |  |  |
| 45                                                                                                                         | 4.2       | 4.2                     | 0.0               | 0.0                  |  |  |  |  |
| 50                                                                                                                         | 8.8       | 13.0                    | 0.0               | 0.0                  |  |  |  |  |
| 60                                                                                                                         | 45.3      | 58.3                    | 0.0               | 0.0                  |  |  |  |  |
| 70                                                                                                                         | 40.3      | 98.6                    | 3.6               | 3.6                  |  |  |  |  |
| 80                                                                                                                         | 1.3       | 100.0                   | 59.1              | 62.7                 |  |  |  |  |
| 100                                                                                                                        | 0.0       | 100.0                   | 24.4              | 87.1                 |  |  |  |  |
| 120                                                                                                                        | 0.0       | 100.0                   | 9.3               | 96.4                 |  |  |  |  |
| 140                                                                                                                        | 0.0       | 100.0                   | 2.2               | 98.6                 |  |  |  |  |
| 170                                                                                                                        | 0.0       | 100.0                   | 1.4               | 100.0                |  |  |  |  |
| 200                                                                                                                        | 0.0       | 100.0                   | 0.0               | 100.0                |  |  |  |  |
| pan                                                                                                                        | 0.0       | 100.0                   | <u>0.0</u>        | 100.0                |  |  |  |  |
| total                                                                                                                      | 100.0     | 0/ la Qine es 40 : 70   | 100.0             |                      |  |  |  |  |
| in-size                                                                                                                    | 98.6      | % In Size as -40+70     | 95.0              | % In Size as -70+140 |  |  |  |  |
| Diameter (mm) or                                                                                                           |           |                         |                   |                      |  |  |  |  |
| d <sub>50</sub> , 6.5.3                                                                                                    | 0.2       | 62                      | 0.178             |                      |  |  |  |  |
| ISO Mean Diameter                                                                                                          |           |                         |                   |                      |  |  |  |  |
| (mm) 6.5.2 0.266 0.181                                                                                                     |           |                         |                   |                      |  |  |  |  |

March 2017

# **Testing Equipment-**

- 1. Hydraulic Load Frame 4 post design with post diameter of 2.5 in. or 3.5 in. capable of holding within ≤50 psi of the target stress for 50 hr.
- 2. Test Fluid Drive System Bladder accumulator capable of maintaining less than 1.0% variations in pressure fluctuations. The system is removed of oxygen through nitrogen purge over copper to 15 ppb.
- 3. Closure Pressure Control Teledyne ISCO D-Series, Model 260D, syringe pump equipped with Rosemount 10,000 psi Transducer.
- 4. ΔP Monitoring Rosemount 0.9 psi Transducer.
- 5. Flow Control Bronkhorst LIQUI-FLOW<sup>®</sup> mass flow meter/controller (L23-RBD-22-K-70S and C%I-ITU-22-K) down stream flow meter/controller.
- 6. User interface National Instruments Data Acquisition Hardware.
- 7. Computer Dell Optiplex.
- 8. Temperature Control PID Temperature controllers.
- 9. Silica Saturation High pressure cylinder with a capacity of 300 mL loaded with 20/40 50 mL and 70/140 250 mL washed northern white frac sand. The cylinder is held in a thermal jacket. The temperature of the sand columns is held at 30 °F above the test temperature during the collection of data once heated. There is no temperature applied for the initial cold readings. There is a 7 micron filter attached to the back side of the sand column prior to prevent inclusion of suspended silica particles into the proppant pack.
- 10. Conductivity Cell Stack The system has a maximum capacity of 4 conductivity cells stacked similar to that shown in Figure A.

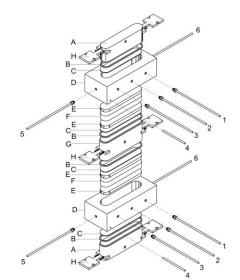



Figure A: Example of Conductivity Cell



### Loading the Sample-

The sample is loaded at 64 g. This is ~2.00 lb/ft<sup>2</sup>. Through in-depth studies, it was determined that no one cell is exactly the same width as another and changes with time. We have normalized our loading to 64.00 g to minimize the mis-loading of each cell. This allows for a more uniform consistency between multiple cells. All the cells used in this study were redesigned based on a detailed engineering study to maximize the resistance to expansion from use and still have a total weight that can be handled

Actual Cell Dimensions are 9.5 in. by 4.5 in. by 2.75 in. which is larger than the suggested cell dimensions of 9.0 in. by 4.0 in. by 2.75 in.

The sample is placed into a vibratory feeder, and fed into a pluviation device. Once sample is pluviated into the cell, a leveling device is used to level the proppant throughout the dimensions of the cell.

Once the sample is leveled, the top core is placed onto the proppant and the cells assembled (up to 4 in a stack) in similar fashion as shown in Figure A.

## Loading the Test Cells into the Hydraulic Press and Startup Protocol

The cells are loaded into the press and the closure pressure is set to a minimum of 800psi. A carpenter's square is used to ensure the vertical alignment of the cells.

2% KCl is flowed through the cell to saturate the proppant pack and remove any residual air.

The  $\Delta P$  lines are attached and the plumbing of the manifold is purged through the  $\Delta P$  lines to remove any air trapped in the entire system.

The internal pressure of the system is brought to 400 psi. The system is checked for leakage. The closure pressure of the system is set to 1400 psi (1000 psi absolute stress). Flow is initiated through the cells and an initial room temperature conductivity reading is taken for each cell in the series.

Initial absolute stress of 1000 psi is maintained for a minimum of 12 hours for resin coated products and 2 hours for uncoated products at the required test temperature. Back pressure is maintained at 400 psi. After the initial stress of 1000 psi and time is achieved, the stress is raised to 2000 psi and maintained for 50 hours. Subsequent test stresses are raised in 2000 psi increments at 100 psi/min. All subsequent test stresses are also maintained for 50 hours at the given stress.

### Acquiring data -

Conductivity is measured at 2000, 4000, 6000, 8000, 10,000, and 12,000 psi closure stress at 150  $^\circ\text{F}.$ 

The test fluid for the conductivity testing was 2% KCI. Flow rates are controlled with a Bronkhorst Liqui-Flow<sup>®</sup> mass flow meter/controller. The test flow rates were cycled at ~2 mL/min, ~3 mL/min, ~4 mL/min, ~3 mL/min, and ~2 mL/min or to maintain a  $\Delta P$  of at least a minimum of 0.002 psi. Each rate was maintained for 3 minutes. After the 15 minute cycle, the



cell is switched to the next cell in the test series and the cycle repeated. During the nonmonitoring time, the other cells are held at a constant flow of ~2 mL/min. Once data is collected on all cells, the cycle returns to the first cell in the test series and the above protocol continued. This schedule is maintained throughout the 50 hours of data collection at each stress.

Pack widths are measured every 5 hours and recorded as described in the "Width Measurement" section.

The transducer zero is checked every 5 hours and if necessary is re-zeroed with a HART 475 Field Communicator.

The raw data is monitored in real time saving one point every 10 seconds. The relevant data collected is as followed: Flow rate (mL/min),  $\Delta P$  (psi), and Temperature (°F). These are used with the Conductivity Equation ("Data Processing to Arrive at Conductivity and Permeability Values") to arrive at the calculated conductivity value.

### Temperature/Viscosity Correlation -

In order to correct for the temperature effect on viscosity of 2% KCl, the Laliberté equation was utilized.

Mark Laliberté, "Model for Calculating the Viscosity of Aqueous Solutions", *J. Chem. Eng. Data*, **2007**, 52, 321-335.

### Data Processing to Arrive at Conductivity and Permeability Values -

- 1. All of the relevant data collected is processed in Excel. The conductivity calculated as previously described is plotted against elapsed time (min.) for given closure stress.
- 2. A Logarithmic regression is drawn through all of the collected data and an equation of the regression is generated. Y=mx+b where Conductivity = Slope\*LN(time)+intercept
- 3. The resulting equation is used to calculate the conductivity at given time.
- 4. Note: The reported zero hour number is established at Time = 30 min.

\*\*All Conductivity Data shown in the data tables are processed via the above methods\*\*

The permeability is calculated from the conductivity value and the width at the given time using the below referenced equations. The equations used are displayed below

Conductivity ( $kW_f$ ) = 26.78 $\mu$ Q/ ( $\Delta P$ )

Q = Flow Rate (mL/min)  $\mu =$  Viscosity  $\Delta P =$  Change in pressure

Permeability (k) = Conductivity (md-ft)\*.012 / width (in.)



**Width Measurement** – "To accurately measure the width of the proppant pack, the variations in sandstone thickness, the compressibility of the sandstone and the compression and thermal expansion of the metal shall be taken into account" Reference ISO 13503-5.

- 1. Pistons of the respective stack are placed between the platens of the press and subjected to a closure pressure of 8,000 psi. The widths are then taken at the 4 corners of the pistons. This is recorded as the zero widths of the pistons.
- 2. Each piece of the Ohio Sandstone that is used for the test series is measured at 4 corners of the sandstone wafer. These widths must be within 0.003 in of each other or the sandstone core is discarded and a new one selected.
- 3. Each shim (top and bottom) is measured at each end. The overall width is averaged to determine the shim width.
- 4. Items 1-3 are added together to determine the width of the test stack per each cell. This is without any proppant in place.
- 5. During the test, the widths are taken every 5 hours at each of the 4 points on the width slat.
- 6. Zero width factors are subtracted from the test width to arrive at a pack width, per given closure pressure and time, at each of the 4 corners. This is further averaged to determine the overall uncorrected proppant pack width.
- 7. In order to correct the proppant pack width, the expansion of metal factor is subtracted and the compression of core factor is added to arrive at the actual proppant pack width per given stress.

